Какими двумя цифрами заканчивается число 99!примечание:n!-факториал числа n,который равен последовательному произведению

Дима Кудинов
  · < 100

Заметим, что у нас было две петрки и 2 двойки премножая их у нас получается сто, тогда факторил числа 99 будет равен ..............00.

Это и будет ответом на ваш вопрос.

18 мая  · < 100
Комментировать ответ…
Вы знаете ответ на этот вопрос?
Поделитесь своим опытом и знаниями
Войти и ответить на вопрос
Читайте также

Что больше — сумма всех цифр или их произведение?

Ярый спортивный болельщик и, возможно, будущий политолог.

Конечно же сумма будет больше. Если сложить все цифры, которые существуют, (именно цифры, не числа) то получится 0+1+2+3... короче 45 получится) Но если мы начнем их все перемножать, то ответ ясен уже на первой паре, поскольку0*1=0, то есть при умножении на 0 всегда будет получаться 0.

22 ноября 2018  · 10,9 K
Прочитать ещё 2 ответа

Кодовый замок может содержать любые 4 цифры.Сколько существует комбинаций в которых имеются хотя бы 2 одинаковые цифры?

Научный журналист. Занимаюсь популяризацией наук: физики, математики и смежных наук.  · vk.com/exact_science_original

Здесь бы уточнить какой алфавит у кодового замка, это набор из цифр от 1 до 9 или от 0 до 9. Разберу для обоих случаев.

Для первого случая получается следующее, если мы хотим, чтобы в коде замка попадались хотя бы 2 одинаковые цифры, то это значит, что на любые две позиции замка должно приходиться одинаковое количество доступных на выбор цифр, т. е. пусть две подряд идущие позиции кодового замка будут иметь одинаковые цифры, тогда на каждую из них приходится по девять цифр, а на остальные две по восемь и семь цифр соответственно. Перемножаем эти количества и получаем ответ
9•9•8•7=4536.
Для алфавита, состоящего из 10 цифр, ход рассуждения тот же, поэтому имеем
10•10•9•8=7200.
(Если я не ошибся то получается так.)

18 апреля  · 14,6 K
Прочитать ещё 1 ответ

Что значит число сочетаний из n элементов по k? Никак не могу понять причем тут k... Объяните на конкретном примере. Слава матану!!!?

Все достаточно просто. У Вас есть 3 фрукта- банан(б), апельсин(а) и яблоко(я). Надо найти число сочетаний из 3 объектов по 2 объекта. То есть всего есть 3 объекта. Надо найти количество сочетаний по два объекта. Пример ответа: ба, бя, ая.

Прочитать ещё 1 ответ

Что такое числа Фибоначчи и почему их выделили в отдельную группу чисел?

Надежда Шихова
Эксперт
4,2K
Редактор и переводчик книг по математике   · zen.yandex.ru/maths

Числа Фибоначчи в Европе популяризовал Леонардо Пизанский (по прозвищу Фибоначчи – сын Боначчи), в задаче о кроликах:

Пусть в огороженном месте имеется пара кроликов (самка и самец) в первый день января. Эта пара кроликов производит новую пару кроликов (самку и самца) в первый день февраля и затем в первый день каждого следующего месяца. Каждая новорожденная пара кроликов становится зрелой уже через месяц и затем через месяц дает жизнь новой паре кроликов. Возникает вопрос: сколько пар кроликов будет в огороженном месте через год, то есть через 12 месяцев с начала размножения.

Оказывается, число кроликов по месяцам описывается последовательностью

1, 2, 3, 5, 8, 13,…

В ней каждое число равно сумме двух предыдущих. Условия задачи все равно нереалистичны, так что можно не стесняться: предположить, что кролики бессмертны, и продолжить последовательность до бесконечности:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155, ….

Есть свидетельства, что последовательность задолго до Леонардо была известна в Индии, и что в честь Фибоначчи ее назвал Эдуард Люка.

Про экспоненциальный рост

Как мы видим, последовательность очень быстро растет (экспоненциально, как последовательность степеней). Примерно как 1, 2, 4, 8, 16, 32, … или 1, 10, 100, 1000, … (тоже экспоненциальный рост.) Экспоненциальный рост вообще встречается в природе и в приложениях: так растут популяции, капиталы в банке, число радиоактивных атомов и число зерен на шахматной доске (Вы же помните легенду про жадного султана и бедного изобретателя шахмат ;))

В природе экспоненциальный рост имеет место лишь приблизительно и только в некоторых пределах.

Красивые фотографии

Последовательности в природе, напоминающие Фибоначчи, тоже похожи на Фибоначчи только приблизительно и в некоторых пределах. Широко известны примеры из мира растений: семена подсолнуха, сосновые шишки, лепестки цветков, ячейки ананаса. Видимо, здесь задействован один механизм (я скопировала первую попавшуюся картинку из интернета):

image.png

Отчасти популярность чисел Фибоначчи связана с такими красивыми картинками. В интернете их полным-полно.

А вот скажем, закон радиоактивного распада не менее поразителен, история его открытия драматична, человечество поставило его себе на службу… но он не так популярен в СМИ. Нет для него таких красивых картинок, да и описывается он дифференциальным уравнением, а любителей дифференциальных уравнений меньше, чем любителей красивых картинок.

В математике

В математике бывают объекты, которые задаются очень просто, но показывают удивительно сложные и многогранные связи между своими компонентами. Например: треугольник в планиметрии, конические сечения, треугольник Паскаля, простые числа, … Они завораживают нас как картинки в калейдоскопе. Чуть повернешь – и открываются новые узоры, новые свойства. Числа Фибоначчи –один из таких объектов. Каждый математик на пути в науку их обязательно встречал.

Чтобы перечислить все их удивительные свойства, нужна отдельная книга (и кстати, выходит журнал с таким названием, посвященный одним только числам Фибоначчи). Скажу только, что отношение каждого числа Фибоначчи к предыдущему приближает золотое сечение, и чем числа больше, тем приближение лучше.

Почему же математики выделили числа Фибоначчи в отдельную группу чисел

Потому что любят все классифицировать и раскладывать по полочкам. Раз есть объект – надо дать ему название. На сайте https://oeis.org/A000045 , где собраны большинство последовательностей чисел, встречающихся в математике, последовательность Фибоначчи идет под номером 45. Она вовсе не такая уж исключительная, кроме неё на этом сайте собрано около трети миллиона последовательностей. Каждая из них тоже представляет собой «отдельную группу чисел».

Специалист по теории чисел Леопольд Кронекер считал, что только одна из них создана Богом (и это вовсе не последовательность Фибоначчи, а другая, на сайте ее номер 27), а остальные – дело рук человеческих.

В целом журналисты несколько преувеличивают значимость чисел Фибоначчи: они, безусловно, прекрасны, но стоят в одном ряду с многими другими не менее прекрасными и полезными математическими объектами.

Корней, Матвей, Пантелей, прекрасная Матильда и негодяй ЕремейПерейти на zen.yandex.ru/maths
8 января  · 50,6 K
Прочитать ещё 3 ответа

При записи страниц в детской книжке было использовано 177 цифр (страницы нумеруются с первой), сколько страниц в книжке ?

Если я правильно понял вопрос:

1-9 страницы по 1 цифре. Итого 9

Остается 168 цифр. Делим пополам это число, ибо после 9 идут двузначные числа. Получаем 84

Итоговый ответ: 84 + 9 = 93 страницы

2 февраля  · 9,0 K
Прочитать ещё 1 ответ