Теперь Кью работает в режиме чтения

Мы сохранили весь контент, но добавить что-то новое уже нельзя

Как решать y= -x в четвертой степени + 8x во второй степени = 16? Что это за тема? Какие правила учить?Что делать после того как приравнял к нулю?

МатематикаДомашние задания+3
Денис Гросс
  · 3,3 K

-x^4 + 8x^2 = 16 <=> x^4 - 8x^2 + 16 = 0 <=> (x^2 - 4)^2 = 0 <=> x^2 = 4 <=> x = {2, -2}

Нужно знать, как выглядят квадраты суммы и разности. Ну или в крайнем случае можно было ввести замену t = x^2 и тогда уравнение свелось бы к квадратному.

Дуров, верни TheQuestion!   · 13 янв 2019
Это биквадратное уравнение решается заменой x2 на переменную без степени:  -x4 + 8x2 + 16 = 0 Сделаем замену y = x2, тогда биквадратное уравнение примет вид -y2 + 8y + 16 = 0 Для решения этого квадратного уравнения найдем дискриминант: D = b2 - 4ac = 82 - 4·(-1)·16 = 64 + 64 = 128 y1 = -8 - √128 ≈ 9.65692·(-1)y2 = -8 + √128 ≈ -1.65692·(-1) Далее помним, что y = x2 и пере... Читать далее

Вы пропустили смену знака у 16 при переносе... Как следствие, "некрасивый" ответ

Ну, эээ, ааа, ммм  · 13 янв 2019

Выражаешь x^2 в виде любой другой буквы, например, t. Получаешь обычное квадратное уравнение, находишь t через дискриминант или Виета, а потом приравниваешь все резульаты к x^2 и находишь корни