Вначале вблизи поверхности океана преобладающее влияние оказывает быстрое падение температуры – поэтому в верхних слоях воды скорость звука с уменьшается с ростом глубины z. По мере погружения температура меняется всё медленнее, а гидростатическое давление продолжает возрастать. На некоторой глубине zm влияние этих двух факторов уравновешивается – на данной глубине скорость звука минимальна. При дальнейшем погружении скорость звука начинает возрастать за счёт роста гидростатического давления.
Чтобы понять, как распространяются звуковые лучи в океане, обратимся к оптической аналогии. Из закона преломления света следует, что в среде
с изменяющимся показателем преломления (т.е. при изменении скорости света в среде) световой луч искривляется. Точно по такому же закону происходит искривление «звуковых лучей» при распространении звука
в неоднородной среде, в которой скорость звука меняется. Частный случай такой среды и представляет собой вода в море.
Предположим, что источник звука находится на глубине zm. Луч, идущий вдоль горизонтали z = zm, будет прямолинейным. А те лучи, которые выходят под некоторыми углами к этой горизонтали, будут искривляться согласно закону преломления. Это явление называют рефракцией звука. Поскольку и выше, и ниже уровня zm скорость звука возрастает, звуковые лучи будут (в соответствии с законом преломления) искривляться в направлении горизонтали z = zm. В какой-то момент луч станет «параллельным» этой горизонтали, и, «отразившись», повернёт обратно к ней.
Итак, рефракция звука в море приводит к тому, что некоторые звуковые волны, испускаемые источником, могут распространяться, не выходя
на поверхность воды и не доходя до дна. А это и означает, что в такой среде реализуется волноводный механизм распространения звука – подводный звуковой канал. Роль «стенок» этого волновода выполняют слои воды на тех глубинах, где происходит «поворот» звукового луча.