Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Показать 18 аналогичных заданий
Число является чётным, следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 1008
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 81 раз. С ним справились 74% пользователей.
Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Для числа выполняется признак делимости на ( оканчивается на цифру ), следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 336
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 781 раз. С ним справились 33% пользователей.
Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Число является чётным, следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 288
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 584 раза. С ним справились 17% пользователей.
Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Для числа выполняется признак делимости на ( оканчивается на цифру ), следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 576
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 75 раз. С ним справились 73% пользователей.
Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Число является чётным, следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 360
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 176 раз. С ним справились 30% пользователей.
Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Для числа выполняется признак делимости на ( оканчивается на цифру ), следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 912
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 65 раз. С ним справились 66% пользователей.
Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Для числа выполняется признак делимости на ( оканчивается на цифру ), следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 768
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 58 раз. С ним справились 78% пользователей.
Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Число является чётным, следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 456
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 184 раза. С ним справились 33% пользователей.
Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Для числа выполняется признак делимости на ( оканчивается на цифру ), следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 1296
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 54 раза. С ним справились 72% пользователей.
Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Число является чётным, следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 1080
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 68 раз. С ним справились 74% пользователей.
Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Число является чётным, следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 816
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 68 раз. С ним справились 68% пользователей.
Если , и — простые числа, то сумма всех делителей числа равна . Найдите сумму делителей числа .
Показать разбор и ответ
Число является чётным, следовательно, одним из его делителей является число . Таким образом, .
Для числа выполняется признак делимости на (сумма цифр равна , которая делится на ), следовательно, одним из его делителей является число . Таким образом, .
Число является простым (так как делится лишь на и на ), поэтому искомое разложение числа на простые множители имеет вид: .
Подставляя , , в формулу для суммы делителей, получим:
.
Ответ: 384
Это задание подготовила команда Яндекс.Репетитора
Это задание решали 242 раза. С ним справились 22% пользователей.