Теперь Кью работает в режиме чтения

Мы сохранили весь контент, но добавить что-то новое уже нельзя
Первый

Роль личности Ньютона в развитии физики

Ньютон — одна из самых известных личностей в физике. Его открытия способствовали сильному дальнейшему развитию науки. Имя Исаак Ньютон знакомо всем, но не каждый знает какое влияние он оказал на становление физики как науки, на формирование современной физики. Данная работа поможет разобраться со многими аспектами научной деятельности Исаака Ньютона.
Биография
Исаак Ньютон — физик, математик, механик и астроном. Он родился слабым и болезненным. Мать уделяла мало внимания мальчику, отец умер рано, поэтому он был отдан родственникам на воспитание. Ньютон был замкнутым ребенком. Любимыми занятиями были живопись, чтение и изобретение технических игрушек.
В 12 лет мальчик был отправлен в школу. Он не сдружился со сверстниками, а учителями применялись суровые методы наказаний. Изначаьно Исаак плохо учился, но позже ставит цель выделиться особыми успехами в учебе и добивается ее. Ньютон стал лучшим учеником и оставался им до окончания школы.
После окончания школы, Ньютон продолжил обучение в Кембриджском университете. С каждым днем стремление узнавать новое лишь росло. Юноша продолжал мастерить, увлекался оптикой, астрономией, математикой. Ньютон проводил все свое время за учебой.
В 1664 Исаак Ньютон начинает самостоятельную творческую деятельность и знакомится со своим преподавателем математики — Барроу. Преподаватель смог повысить интерес Ньютона к математике.В последующие годы появляются первые открытия Ньютона, а большая часть исследований делается во время эпидемии чумы в 1665-1666 годах.
В 1669 году Ньютон становится преемником Барроу и попадает на новую должность. Ученый изобретает телескоп-рефлектор, изобретение вызывает интерес, из-за чего Исаак попадает в королевское общество. Все его новые открытия начали подвергаться критике.  В итоге ученый стал мало контактировать с ними. 
 Ньютон посвящает последние годы своей жизни административной деятельности. Последняя естественнонаучная работа была им опубликована за 20 лет до смерти.
Многие работы были опубликованы посмертно, так как Ньютон боялся критики.
20 марта 1727 года ученый скончался, оставив наследство ближайшим родственникам.
Открытия, связанные с физикой
В своих открытиях Ньютон опирался на труды ученых Рене Декарта, Галилео Галилея и Иоганна Кеплера. Он придал завершенность их трудам, объединив в универсальную систему мира.
Им были созданы три закона механики: закон инерции, закон силы, закон противодействия.
Он сформулировал закон Всемирного тяготения, теорию движения небесных тел.
В оптике им была открыта дисперсия, обоснованы законы отражения и преломления. Вследствие его открытий в оптике был создан телескоп – рефлектор с вогнутым зеркалом.
Ньютоном были написаны книги «Оптика» и «Математические начала натуральной философии».
Три закона механики
Первый закон Ньютона
Первый закон Ньютона — закон инерции. Инерция — свойство тела оставаться в инерциальных системах отсчета в состоянии покоя или равномерного прямолинейного движения в отсутствие внешних воздействий, а также препятствовать изменению своей скорости при наличии внешних сил за счёт своей инертной массы. 
1 закон Ньютон формулировал так:
Всякое тело продолжает удерживаться в своём состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.
То есть неподвижный объект будет оставаться в состоянии покоя, а движущийся объект будет иметь постоянную скорость, если не будет действовать несбалансированная сила.
Первый закон является прямым ответом Аристотелю (Аристотель утверждал: чтобы тело двигалось, его необходимо «двигать»).
Второй закон Ньютона
Второй закон Ньютона — закон движения, описывающий взаимосвязь между приложенной к материальной точке силы и получающимся от этого ускорением этой точки. 
2 закон Ньютон формулировал так:
Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
То есть сумма всех сил, действующих на тело, равна произведению массы тела на ускорение, сообщаемое этой суммой сил: F = m*a.
Третий закон Ньютона
Третий закон Ньютона —  закон о взаимодействии двух материальных точек и является следствием однородности и зеркальной симметрии пространства.
3 закон Ньютон формулировал так:
Действию всегда есть равное и противоположное противодействие, иначе, взаимодействия двух тел друг на друга между собою равны и направлены в противоположные стороны.
То есть тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Они приложены к разным телам и поэтому не могут уравновешивать друг друга
Общий вывод по трем законам механики
Ученые веками пытались найти законы, которыми может быть описано любое движение тел. Исаак Ньютон смог сформулировать три основных закона путем анализа и объединения работ других ученых. Ему удалось выразить все основные принципы движения тел в трех законах. Ньютон связал законы Галилея, Кеплера и Декарта, и дополнил их, он пошел по пути, отличному от предыдущих ученых и разделил физическое движение на две категории — равномерное и неравномерное движение. Именно это помогло ему сформулировать три закона движения.  В итоге серия событий от Коперника до Ньютона стала известна под общим названием «Научная революция». Три закона были невероятно важным рывком в развитии науки.
Законы Ньютона очень важны, потому что они связаны почти со всем, что мы видим в повседневной жизни. Эти законы точно говорят нам, как движется все вокруг нас. Но по их использованию есть ограничения. Они выполняются при условиях, что рассматриваемые объекты со скоростью меньшей скорости света и объекты по размерам больше размеров атомов или частиц, иначе — они не будут действовать.
Закон Всемирного тяготения
Формулой 4 закон выражается так: F=G(M*m)/R^2
Ньютон открыл связь между движением Луны и движением тела, свободно падающего на Землю. С помощью своих динамических и гравитационных теорий он объяснил законы Кеплера и создал современную науку о гравитации.
С помощью закона тяготения удалось объяснить многие явления, такие как: как разные объекты в этой вселенной влияют на другие. как гравитация отвечает за вес тела и удерживает нас на земле, как происходит движение Луны вокруг Земли.
Небесная механика Ньютона
Основа теории Ньютона возникла из предположения из закона всемирного тяготения.
Ньютон отличался от более раннего убеждения, что планеты находятся в равномерном движении. Любое изменение скорости и направления он определял, как ускорение и поэтому утверждал, что орбитальное движение есть своего рода ускорение. Поскольку объект, движущийся по искривлённой траектории, испытывает ускорение, было заключено, что Земля на её орбите вокруг Солнца постоянно подвергается влиянию силы, которую назвали гравитацией. Задачей Ньютона было определить действующую на небесное тело силу гравитации и выяснить, как она влияет на его движение (первый закон).
Никому до Ньютона не удавалось ясно связать закон всемирного тяготения и законы движения планет, он первый догадался, что гравитация действует между любыми двумя телами во Вселенной. Наконец, Ньютон не только издал предполагаемую формулу закона всемирного тяготения, но и предложил полную математическую модель, созданную с применением закона тяготения, второго закона и математического анализа.
В совокупности этой триады, он построил основы небесной механики. Впоследствии с помощью ньютоновской гравитации получилось с высокой точностью объяснить все наблюдаемые движения небесных тел
 Закон всемирного тяготения позволил решить не только задачи небесной механики, но и ряд физических и астрофизических задач.  Ньютон классифицировал все другие мыслимые движения, включая движение планет по своим круговым орбитам, как неравномерное движение или ускорение.
Ньютоновской теорией пользовались долгие годы. Первые наблюдаемые отклонения от теории Ньютона были обнаружены лишь через 200 лет. Вскоре эти отклонения объяснила общая теория относительности; ньютоновская теория оказалась её приближённым вариантом.
В дальнейшем на всех этапах своего развития небесная механика Ньютона играла ключевую роль в исследованиях Солнечной системы и проверке физических теорий гравитации, пространства и времени.
Оптика
В «Оптике» Ньютон рассматривает законы прохождения света путем преломления через призмы и линзы, дифракцию и теорию смешения цветов. Эта работа Ньютона считается одной из важнейших в физике; вплоть до 19 века эти законы определяли развитие оптики.
Оптические исследования Ньютона продолжались не меньше 15 лет и открытие Ньютона состояло в том, что и в бесконечном разнообразии цветов существуют постоянные, неизменные элементы — простые лучи, не меняющиеся по цвету ни преломлением, ни отражением. На основе этого хаос цветовых явлений сразу упорядочился и вошел в прочные математические рамки. Была открыта дисперсия света.
 В своем выступлении перед Королевским обществом Ньютон оспорил труды Аристотеля и Декарта, и установил, что белый свет не является первичным, а состоит из цветных компонентов.
Ньютона часто считают сторонником корпускулярной теории света; на самом деле он предполагал, что свет также может быть связан с волнами.
Сравнивая различные свойства света, Ньютон пришел к выводу, что свет имеет более сложное строение: в нем есть черты, которые похожи на движение потоков частиц, но вместе с тем другие свойства объясняются на основе представления о волнах.
Ряд гипотез, показанных в «Оптике» оказались пророческими.  Открытие сохранило свое значение в течение веков.
 Вследствие своих открытий в оптике, Ньютоном создается телескоп-рефлектор.
 Он родился в эпоху тусклых телескопов. Благодаря своим экспериментам с цветами Ньютон знал, что линзы преломляют разные цвета под разными углами, создавая для зрителя нечеткое изображение.
В качестве улучшения Ньютон предложил использовать отражающие зеркала, а не преломляющие линзы. Большое зеркало захватывало изображение, затем меньшее зеркало отражало его в глаз зрителя. Этот метод не только дает более четкое изображение, но и позволяет использовать телескоп гораздо меньшего размера. По сей день почти все астрономические обсерватории используют вариант оригинальной конструкции Ньютона.
Физика без открытий Ньютона
Не будь Исаака Ньютона, им бы не были сформулированы его основные законы, многие научные труды не были бы проделаны.
Ньютон на несколько лет опередил остальной мир.
Но его законы не мог быть не открыты. Учитывая работы Кеплера, Галилея и других, это было неизбежно, если бы оно было установлено и доказано.
Если бы Ньютон никогда не жил, вполне вероятно, что мы отстали бы от того, что имеем сейчас, на несколько лет или десятилетий. Но скачок в науке все равно произошел бы.
Стоит также отметить, что выдающийся вклад Ньютона, навсегда изменивший мир, заключался в том, что он установил силу математических моделей в науке. Однако вполне вероятно, что это продвижение также имело бы место.
Если думать о том, насколько все изменилось бы сейчас, то ответ: «Не сильно». Некоторые мыслители пришли бы к законам Ньютона. Конечно, никто не опубликовал ничего, эквивалентного его законам движения и, самое главное, закону всемирного тяготения за два десятилетия между его удовлетворительной формулировкой и его окончательной публикацией.
Если думать о том, как изменился мир в результате феноменальных прозрений Ньютона, ответ будет «намного и быстро».
После Ньютона началась научная революция. Началась гонка, чтобы узнать, как все работает.
Заключение
Можно с уверенностью сказать, что Ньютон является основателем классической физики. Значимость открытий Ньютона для истории науки трудно переоценить. Все основное, созданное Ньютоном, сохранило для нас свое значение и актуальность почти полностью. Ньютонова наука — не историческая реликвия, а основа естествознания сегодняшнего дня.
Уникальность его открытий неразрывно связана с применением математических методов к изучению природы, того, что нас окружает. Ньютон создал основы динамики как надежной опоры механической картины мира, применяя ее законы к небесным явлениям.
Влияние на развитие физики было колоссальным. Только к 20 веку основные положения, на которые опирался Ньютон, потребовали коренного пересмотра. Ньютоном были изучены все основные вопросы физики и математики, актуальные для его времени. Могучий аппарат ньютоновской механики, его универсальность и способность объяснить и описать широчайший круг явлений природы, особенно астрономических, оказали огромное влияние на многие области физики.
Прекрасные в своей простоте три закона Ньютона позволяют ученым понять движение всего. Эти три простых закона многое объясняли, но они становятся невероятно мощными в сочетании с четвертым законом — законом всемирного тяготения, который гласит, что гравитация — это сила притяжения, очень притягивающая сила.
Когда его три закона механики и закон всемирного тяготения используются вместе, Мало того, мы можем объяснить приливы, движение пушечных ядер, практически все, что мы видим в окружающем нас мире.
 После смерти Ньютона возникло научно-философское направление, получившее название ньютонианства, наиболее характерной чертой которого было развитие высказывания Ньютона: "гипотез не измышляю" и призыв к феноменологическому изучению явлений при игнорировании фундаментальных научных гипотез.
В 20 веке законы Ньютона были заменены квантовой механикой и теорией относительности Альберта Энштейна, как наиболее фундаментальными законами физики. Тем не менее, законы Ньютона продолжают давать точное описание природы, за исключением очень маленьких тел, таких как электроны, или тел, движущихся со скоростью, близкой к скорости света. Квантовая механика и теория относительности сводятся к законам Ньютона для более крупных тел или для тел, движущихся медленнее. Эйнштейн своими открытиями расширил, дополнил, уточнил теории Ньютона.
Ньютона, Галилея и Эйнштейна называют «отцами современной физики». Ньютона так назвали из-за его знаменитого закона движения и тяготения.
Неизменно прочными остаются ньютоновы принципы. Они определили бессмертие дела Ньютона и его значение для современности.
Ньютон – основоположник современной физики.