Теперь Кью работает в режиме чтения

Мы сохранили весь контент, но добавить что-то новое уже нельзя

Для описания каких систем используется преобразование Фурье-Бесселя?

Домашние задания
Анжелика Лозовая
  · 983
На Кью задали 1 похожий вопрос
Увлекаюсь физикой, астрономией и финансами.  · 21 июл 2022  · forecast.nanoquant.ru
Более корректно говорить о фурье-преобразовании с функциями Бесселя в качестве базиса.
Такой анализ подходит для для любых систем с цилиндрической (или угловой) симметрией для исследования структуры вдоль радиуса.
Простейший пример.
В тарелке налита вода. В центре тарелке на поверхности воды источник волн. На поверхности воды образуются стоячие волны с цилиндрической симметрией, то есть картинка не меняется при повороте тарелки вокруг центра на любой угол. Вам надо найти спектр колебаний этих стоячих волн.
Неправильное решение. Перейти в полярные координаты и сделать классическое фурье-разложение по тригонометрическим функциям вдоль радиуса.
Почему это неправильно?
Потому что чем дальше волна от центра, тем меньше её амплитуда при одной и той же энергии. Энергия распределяется по более длинной окружности. А неправильное решение будет интерпретировать это уменьшение амплитуды волны, как уменьшение энергии, и тем самым, как уменьшение вклада этой волны в энергию всей системы. Придется "руками" корректировать этот эффект и увеличивать "эффективную" амплитуду тех гармоник, которые сосредоточены около края тарелки и уменьшать "эффективную" амплитуду тех гармоник, которые сосредоточены около центра тарелки.
Правильное решение. Также перейти в полярные координаты, но сделать разложение не по синусам и косинусам, а по ортонормированному базису функций Бесселя. У этого набора функций нет строгого периода, но существует аналог частоты. И вот амплитуды этих бесселевских гармоник и дают правильное спектральное разложение.
Итак, если система имеет трансляционную симметрию, например, имеет период вдоль одного направления декартовых координат (дискретная трансляционная симметрия), а вдоль двух других направлений её можно транслировать на любое расстояние (непрерывная трансляционная симметрия), то делаем классическое преобразование Фурье вдоль первого направления.
А если система имеет осевую симметрию, то вдоль радиуса делаем преобразование Фурье с функциями Бесселя.
И т.д. В зависимости от симметрии системы применяем разные ортонормированные наборы функций (полиномы Лежандра, полиномы Чебышева, полиномы Эрмита, полиномы Лягера и т.д.) для "удачного" разложения функций системы.
.
P.S.
"Неудачные" разложения по неадекватному базису тоже бывают полезными. Например, разложение в ряд Тейлора в окрестности точки, это, вообще, разложение по неортонормированному базису функций, но очень полезное в анализе поведения функции в окрестности точки.
Эксперт по оптимизации инвестиционного портфеля и прогнозированию биржевых цен.Перейти на forecast.nanoquant.ru
кандидат физико-математических наук, математик, исследователь, data scientist, предпринима...  · 14 февр 2021  · novikovlabs.ru

Вопрос несколько некорректный. Что значит преобразование описывает систему? Обычно преобразования используются для некоторых целей - в основном упростить вычисления. А системы обычно описываются некоторыми уравнениями. Поэтому очень странно слышать, чтобы преобразование что-то там описывало.

Ответы на похожие вопросы
Для описания каких систем используется преобразование Фурье-Бесселя? — 2 ответа, задан 
Увлекаюсь физикой, астрономией и финансами.  · 21 июл 2022  · forecast.nanoquant.ru
Более корректно говорить о фурье-преобразовании с функциями Бесселя в качестве базиса.
Такой анализ подходит для для любых систем с цилиндрической (или угловой) симметрией для исследования структуры вдоль радиуса.
Простейший пример.
В тарелке налита вода. В центре тарелке на поверхности воды источник волн. На поверхности воды образуются стоячие волны с цилиндрической симметрией, то есть картинка не меняется при повороте тарелки вокруг центра на любой угол. Вам надо найти спектр колебаний этих стоячих волн.
Неправильное решение. Перейти в полярные координаты и сделать классическое фурье-разложение по тригонометрическим функциям вдоль радиуса.
Почему это неправильно?
Потому что чем дальше волна от центра, тем меньше её амплитуда при одной и той же энергии. Энергия распределяется по более длинной окружности. А неправильное решение будет интерпретировать это уменьшение амплитуды волны, как уменьшение энергии, и тем самым, как уменьшение вклада этой волны в энергию всей системы. Придется "руками" корректировать этот эффект и увеличивать "эффективную" амплитуду тех гармоник, которые сосредоточены около края тарелки и уменьшать "эффективную" амплитуду тех гармоник, которые сосредоточены около центра тарелки.
Правильное решение. Также перейти в полярные координаты, но сделать разложение не по синусам и косинусам, а по ортонормированному базису функций Бесселя. У этого набора функций нет строгого периода, но существует аналог частоты. И вот амплитуды этих бесселевских гармоник и дают правильное спектральное разложение.
Итак, если система имеет трансляционную симметрию, например, имеет период вдоль одного направления декартовых координат (дискретная трансляционная симметрия), а вдоль двух других направлений её можно транслировать на любое расстояние (непрерывная трансляционная симметрия), то делаем классическое преобразование Фурье вдоль первого направления.
А если система имеет осевую симметрию, то вдоль радиуса делаем преобразование Фурье с функциями Бесселя.
И т.д. В зависимости от симметрии системы применяем разные ортонормированные наборы функций (полиномы Лежандра, полиномы Чебышева, полиномы Эрмита, полиномы Лягера и т.д.) для "удачного" разложения функций системы.
.
P.S.
"Неудачные" разложения по неадекватному базису тоже бывают полезными. Например, разложение в ряд Тейлора в окрестности точки, это, вообще, разложение по неортонормированному базису функций, но очень полезное в анализе поведения функции в окрестности точки.
Эксперт по оптимизации инвестиционного портфеля и прогнозированию биржевых цен.Перейти на forecast.nanoquant.ru
Для описания каких систем используется преобразование Фурье-Бесселя? — 2 ответа, задан 
кандидат физико-математических наук, математик, исследователь, data scientist, предпринима...  · 21 мар 2021  · novikovlabs.ru

https://scask.ru/k_book_gl1.php?id=7

Вот здесь напсано, что для описания оптических систем, обладающих круговой симметрией.

Это тот ответ, который Вы ожидали?