Родоначальником римановой геометрии является немецкий математик Бернхард Риман, который изложил её основные понятия в 1854 году.
После опубликования работ Римана его идеи привлекли внимание ряда математиков, которые развивали дальше аналитический аппарат римановой геометрии и устанавливали в ней новые геометрические теоремы. Важным вкладом в развитие римановой геометрии было создание итальянскими геометрами Риччи-Курбастро и его учеником Леви-Чивита на рубеже XX века тензорного исчисления, которое оказалось наиболее подходящим аналитическим аппаратом. Решающее значение имело применение римановой геометрии в создании общей теории относительности. Это привело к бурному развитию римановой геометрии и её разнообразных обобщений.
В настоящее время риманова геометрия вместе с её обобщениями представляет собой обширную область геометрии, которая продолжает успешно развиваться.
===========================
Риманова геометрия — это раздел дифференциальной геометрии, объектом изучения которой, главным образом, являются римановы многообразия. Римановы многообразия — это гладкие многообразия с дополнительной структурой, римановой метрикой, то есть с выбором евклидовой метрики на каждом касательном пространстве, которая гладко меняется от точки к точке.
====================
Подразделом римановой геометрии является геометрия в целом, которая выявляет связь глобальных свойств риманова многообразия (к примеру, топология или диаметр) и его локальных свойств (к примеру, ограничений на кривизну).
Основными элементами трехмерной римановой геометрии являются точки, прямые и плоскости.
====================
В римановой геометрии имеют место такие предложения: через каждые две точки проходит одна прямая, каждые две плоскости пересекаются по одной прямой, каждые две прямые, лежащие в одной плоскости, пересекаются (в одной точке), точки на прямой расположены в циклическом порядке (как и прямые, лежащие в одной плоскости и проходящие через одну точку). Таким образом, требования аксиом римановой геометрии, относящиеся конгруэнтности, обеспечивают свободные движения фигур по плоскости и в пространстве Римана, как на плоскости, так и в пространстве Евклида.
=====================
Метрические свойства плоскости Римана «в малом» совпадают с метрическими свойствами обыкновенной сферы, а именно: для любой точки плоскости Римана существует содержащая эту точку часть плоскости, изометричная некоторой части сферы; радиус R этой сферы — один и тот же для всех плоскостей данного пространства Римана. Число К = 1/R2 называется кривизной пространства Римана. Следует отметить, что, чем меньше К, тем ближе свойства фигур этого пространства к евклидовым.
======================
«В целом» свойства плоскости Римана отличаются от свойств целой сферы в следующем: на плоскости Римана две прямые пересекаются в одной точке, а на сфере два больших круга, которые выступают как прямые в сферической геометрии, пересекаются в двух точках; прямая, лежащая на плоскости, не разделяет эту плоскость, таким образом, если прямая а лежит в плоскости a, то любые две точки плоскости a, не лежащие на прямой а, возможно соединить отрезком, не пересекая прямой а.
Таким образом, Риман построил вторую разновидность неевклидовой геометрии в противоположность геометрии Лобачевского.