На всякий случай сразу оговоримся, что аргумент синуса выражен именно в радианах.
Вспомним, что такое угол в радианах, угол в радианах это "длина дуги единичной окружности на которую опирается угол" (есть разные эквивалентные определения, нам сейчас удобно это).
Для начала рассмотрим обычный геометрический синус, реально существующего треугольника.
Так как рисовать мне негде, будем по классике считать, что у нас есть координатная плоскость, в первой четверти есть луч образующий угол "а" с осью икс.
Построим единичную(для удобства) окружность.
Из точки пересечения "луча" и окружности(M) опустим перпендикуляр на ось икс, легко показать, что его длина будет равна "y". И так мы получили прямоугольный треугольник с катетами x,y, и гипотенузой "1" (так как радиус 1). Строго по определению sin(a)=y/1=y
Дуга(единичной окружности), на которую опирается угол, это величина угла в радианах или просто "а". мы знаем, что кривая(дуга) соединяет точку, лежащую на оси икс и точку M, при этом мы знаем, что кратчайшее расстояние между точкой M и прямой(осью икс), это длина перпендикуляра опущенного из точки на прямую(как мы знаем это в точности "y"). Таким образом дуга не может быть меньше y, или "a>=y", а "y" это в точности sin(a) => a>=sin(a)
Если переходить к обобщениям тригонометрической функции на тупые и отрицательные углы, то
1) известно что синус(действительного аргумента) всегда <=1. угол 1 радиан лежит ещё в первой четверти, для которой мы утверждение доказали, для а>1>=sin(a) верность вполне очевидна.
2) Для отрицательных углов выполняется обратное неравенство. это легко можно показать просто из нечётности синуса( sin(-a)=-sin(a) ),
для а<=0, пусть b=-a, тогда b есть положительное, для него мы уже доказали
sin(b)<=b
-sin(b)>=-b {умножили на -1 обе части неравенства, поменяв знак неравенства так как умножали на отрицательное число}
sin(-b)>=-b => sin(a)>=a (как помним, для отрицательных "а")