Математическая дисциплина, предметом которой является разработка формального аппарата для описания строения естественных и некоторых искусственных языков. Возникла в 50‑х гг. 20 в.; одним из главных стимулов появления М.л. послужила назревшая в языкознании потребность уточнения его основных понятий. Методы М. л. имеют много общего с методами математической логики — математической дисциплины, занимающейся изучением строения математических рассуждений, — и в особенности таких её разделов, как теория алгоритмов и теория автоматов. Широко используются в М.л. также алгебраические методы. М.л. развивается в тесном взаимодействии с языкознанием. Иногда термин «М.л.» используется также для обозначения любых лингвистических исследований, в которых применяется какой-либо математический аппарат.
Математическое описание языка основано на восходящем к Ф. де Соссюру представлении о языке как механизме, функционирование которого проявляется в речевой деятельности его носителей; её результатом являются «правильные тексты» — последовательности речевых единиц, подчиняющиеся определённым закономерностям, многие из которых допускают математическое описание. Разработка и изучение способов математического описания правильных текстов (в первую очередь предложений) составляет содержание одного из разделов М.л. — теории способов описания синтаксической структуры. Для описания строения предложения — точнее, его синтаксической структуры — можно либо выделить в нём составляющие — группы слов, функционирующие как цельные синтаксические единицы, либо указать для каждого слова те слова, которые ему непосредственно подчинены (если такие есть). Так, в предложении «Ямщик сидит на облучке» (А.С.Пушкин) при описании по 1‑му способу составляющими будут все предложение П, каждое его отдельное слово и группы слов A = сидит на облучке и B = на облучке (см. рис. 1; стрелки означают непосредственное вложение); описание по 2‑му способу даёт схему, показанную на рис. 2. Возникающие при этом математические объекты называются системой составляющих (1‑й способ) и деревом синтаксического подчинения (2‑й способ).
Аппарат деревьев подчинения и систем составляющих используется также для представления глубинно-синтаксической структуры предложения, которая образует промежуточный уровень между семантической и обычной синтаксической структурой (последнюю часто называют поверхностно-синтаксической).
Более совершенное представление синтаксической структуры предложения (требующее, однако, более сложного математического аппарата) дают системы синтаксических групп, в которые входят как словосочетания, так и синтаксические связи, причём не только между словами, но и между словосочетаниями. Системы синтаксических групп позволяют совмещать строгость формального описания строения предложения с гибкостью, присущей традиционным, неформальным описаниям. Деревья подчинения и системы составляющих являются предельными частными случаями систем синтаксических групп.
Другой раздел М. л., занимающий в ней центральное место, — теория формальных грамматик, начало которой было положено работами Н. Хомского. Она изучает способы описания закономерностей, характеризующих уже не отдельный текст, а всю совокупность правильных текстов того или иного языка. Эти закономерности описываются с помощью формальной грамматики — абстрактного «механизма», позволяющего с помощью единообразной процедуры получать правильные тексты данного языка вместе с описаниями их структуры. Аппарат деревьев подчинения и систем составляющих используется также для представления глубинно-синтаксической структуры предложения, которая образует промежуточный уровень между семантической и обычной синтаксической структурой (последнюю часто называют поверхностно-синтаксической).
Учитель русского языка, литературы, воспитатель детского сада, учитель английского языка... · 19 сент 2021
Я однажды задавала вопрос об особом месте математики в антиутопии "Мы". Я спрашивала математиков, которые читали этот роман, какие дополнительные смыслы они видят в математических образах и сравнениях Замятина. Пока мне никто не ответил. Я не думаю, что это совсем корректный ответ на данный вопрос, просто сочетание лингвистики и математики навеяло воспоминание:)
Почему Вы решили, что в лингвистике есть модели? Правила и исключения не дают модель. Использование дядей Булем (булевой алгеброй) вырванных из языка отдельных слов и выражений тоже не даёт модель, разве что виртуальную. Но в вопросе , как мне кажется, содержится вопрос о натуральной модели.
Если рассматривать язык, как самодостаточную математическую модель, а не... Читать далее