Интересующие темы: история математики, история христианства, библеистика. · 30 сент 2021
Классическое определение числа Пи -- отношение длины окружности к её диаметру. Только вот, исторически число "Пи" как именно таковой математический объект появилось сравнительно недавно -- в 1706 в трудах Уильяма Джонса и в 1736 в работах Леонарда Эйлера. До этого времени лишь описательно говорилось о такого рода отношении, не обозначаемом специальной константой.
Вычисляли по-разному и разными инструментами.
Фундаментальный подход (хотя, на самом деле, прикладной):
а) Либо считали Пи как среднее между отношением периметра описанного многоугольника к диаметру и отношением вписанного многоугольника к диаметру (эдакое "протоинтегрирование"). Т.е., вписываете правильный n-угольник, описываете правильный n-угольник, а длина окружности где-то между ними. Все рациональные приближения дробями "сверху" и "снизу", на самом деле, сводятся именно к этом задаче: к геометрическому приближению описанными и вписанными многоугольниками.
б) Либо находили это значение как обратную задачу от приближенного решения задачи квадратуры круга (точного решения не может в принципе существовать при наличии каких угодно инструментов; есть приближенные решения разной степени точности при помощи циркуля - линейки, циркуля-линейки - транспортира, циркуля - линейки - циссоиды, циркуля - линейки - конхоиды, циркуля - линейки - конхоиды - циссоиды, циркуля - линейки - конических сечений и т.д.)
Прикладной "повседневный", "бытовой" и "производственный" подход:
а) Либо брали бечевку, опоясывали ей цилиндр, а потом делили длину бечевки на диаметр цилиндра. Диаметр цилиндра замерить относительно просто штангенциркулем или подобными приборами.
б) Альтернативный способ подсчета: площадь окружности единичного радиуса равна, как раз, π. Можно начертить окружность с радиусом, принятым за единичный, а потом покрыть круг внутри окружности монетками или зернышками, затем посчитать их количество и умножить на площадь каждого.
в) Вариант способа 2б: закрасить такой круг и посчитать приблизительно по расходу краски.
Вот какими-то такими приёмами и пользовались. Часто вопрос возникал в контексте нахождения приближенных решений задачи Квадратуры Круга. Задача Квадратуры Круга не имеет и не может иметь точного решения, даже если к циркулю и линейке добавить какие угодно дополнительные инструменты. Эту задачу можно решить только приближенно с разной степенью точности.
Трудность числа "пи" заключается в том, что в начертательной геометрии в принципе невозможно практическое построение линейного объекта меры (т.е. длины) "пи". Но возможно построить двумерный объект площадью "пи" (круг внутри окружности единичного радиуса). Это отличает число "пи" от алгебраических иррациональных чисел -- например от sqrt(2) или cbrt(2) , построение которых возможно (первого -- только циркулем и линейкой, второе -- циркулем, линейкой и доп. инструментами (например, циссоида, транспортир и невсис). Наглядная демонстрация отличия трансцендентных чисел от алгебраических иррациональных.
Инженер-радиофизик, преподаватель физической культуры и спорта · 16 окт 2021
Лучше всего через арктангенс, разложив его в ряд Тэйлора:
arctg x = x - x³/3 + x⁵/5 - ∙∙∙ + (-1)ⁿ⁺¹ x²ⁿ⁺¹ /(2n+1) + ∙∙∙; n ∈ ℕ; при x=1 ⇒ arctg 1=π/4=∑(-1) ⁱ ⁺¹ /(2i+1); i от 1 до n ∈ ℕ; ∴ π=4(∑(-1) ⁱ ⁺¹ /(2i+1)); i от 1 до n ∈ ℕ с точностью до 2/n².
Тут возразили не по существу сразу 2 эксперта-математика, один даже гибрид с биологом, типа медленно сходится, однако... Читать далее
Инженер путей сообщения – строитель · 29 сент 2021
Например можно так посчитать. Мы точно знаем, что арксинус единицы равен π / 2. Раскладываем арксинус в ряд Тейлора, подставляем туда единицу и полученный результат умножаем на два. Число π у нас в кармане.
Расскажу про очень необычный способ определения числа π, о котором мало кто знает. Французский естествоиспытатель 18 века Бюффон провёл на большом листе бумаги параллельные равноотстоящие прямые линии и стал бросать на него случайным образом иголку длиной равной шагу между линиями, подсчитывая число бросаний (N) и число попаданий иголки на одну из линий (N1). Теория... Читать далее
Для вычислений использовали метод вписанных и описанных правильных многоугольников. Вписывали окружность в квадрат, описывали вокруг неё квадрат, затем вычисляли периметр обоих квадратов и считали этот периметр приближением длины. Конечно, с квадратом приближение получалось очень неточным, но зато его точность была видна по разнице между периметром описанного и вписанного. Далее число граней многоугольника увеличивали и таким образом увеличивали точность приближения для значения числа пи.
С древних времён число пи получали, вписывая и описывая в окружность правильные многоугольники. Например, вписав в окружность правильный шестиугольник, можно понять, что пи больше 3. А описав квадрат - понять, что оно меньше четырёх. Так же можно повторять с правильными многоугольниками с большим числом сторон, точность будет возрастать с ростом числа сторон. Так, например, Клавдий Птолемей получил приближение 377/120 = 3,141(6) (первые цифры числа пи - 3,14159265), посчитав периметр вписанного 720-угольника.
Но с развитием математического анализа, в частности, теории рядов, появились наиболее эффективные методы вычисления числа пи: его представляли как ряд, оставалось только найти достаточно быстросходящийся ряд и посчитать сумму нужного числа членов. Например, из равенства
pi/4 = arctan(1) = arctan(1/2) + arctan(1/3)
И разложения арктангенса в ряд Тейлора получается ряд, слагаемые в котором убывают довольно быстро(примерно как 1/(k*2^k) и 1/(k*3^k)), по сравнению с рядами, известными ранее, а значит, можно получить довольно точное значение пи, сложив не так много чисел.
С развитием компьютеров, стали полезны более сложные, но более точные алгоритмы получения этой константы. Один из таких, алгоритм Чудновского, использует вот такую формулу:
Считать даже несколько слагаемое этого ряда руками безумно долго, но благодаря компьютерам этот алгоритм помог побить рекорд вычисления знаков числа пи после запятой: было получено более триллиона знаков после запятой.
Благодаря суперкомпьютерам и распределённым вычислениям, стали популярны алгоритмы получения конкретной цифры числа в двоичной, шестнадцатеричной или какй-либо ещё записи. например, формула Бэйли — Боруэйна — Плаффа:
С помощью неё проект PiHex выяснил, что квадриллионный бит числа пи - ноль.
Кроме того, есть алгоритм Брента — Саламина, который, изменяя некоторые четыре числа по заданному алгоритму, позволяет удваивать число известных знаков числа пи за каждую итерацию.
В реальности вычисление числа пи с такой точностью - скорее развлечение, проверка алгоритмов и компьютеров. Даже НАСА в своих вычислениях использует не больше 15 знаков числа пи после запятой.
В Википедии хорошо написано - изначально считали как предел периметра вписанных/описанных правильных многоугольников, причем выбором правильной последовательности многоугольников получаются неплохо сходящиеся ряды, потом из тригонометрических тождеств опять же через разложение в ряд Тейлора. https://ru.m.wikipedia.org/wiki/%D0%9F%D0%B8_(%D1%87%D0%B8%D1%81%D0%BB%D0%BE)